
1

Smartphone Tracking w/ Hololens

Sd_may19-27
Cory Johannes, Jose Lopez, Ryan Quigley

Travis Harbaugh, Ben Holmes, Anthony House

2

Executive Summary 4

Requirements Specification 4
Functional Requirements 4
Use Cases 5
Non-Functional Requirements 6

System Design and Development 7
Conceptual Diagram 7

Office Monitoring 7
Construction Site 7

Architectural Diagram 8
Website 8
HoloLens 8
Android Application 8
Database 9
Previous Work And Literature 9

Truong Et Al. 9
Gallagher Et Al. 9
Park, Kwanghyo Et Al. 9
A. R. Jiménez Et Al. 10

Our Plan 10
Objectives 10
Constraints 10
Functional Decomposition 11

Step Tracking Algorithm 11
Functional Design Diagram 12

Bluetooth Communication Diagram 12
Modules 13
Interfaces 14
Constraints 14

Implementation 15
Implementation Diagrams 15

Front End 15
Camera Scripts 15
Worker Movement Scripts 15
Absolute Path 16
Animation Script 16
Game Manager Script 16

3

UI Menu Input Scripts 16
Rethink Database Script 16
Dijkstra’s Algorithm 16

Back End 17
Technologies 18

Software Used 18
Standards/Best Practices 18

Testing/Evaluation 21
Test Plan 21

Functional Requirements Test Plan 21
2.13.1 Non-Functional Test Plan 29

Interface Testing 31
System Integration Testing 32

Overview 32
Testing 32

User-Level Testing 33
Validation/Verification 33
Evaluation 33
Test Path Accuracies: 35

Project and Risk Management 36
Roles & Responsibilities 36
Project Schedule 36

Proposed Spring Schedule 36
Actual Spring Schedule 37

Risks and Mitigation 38
Lessons Learned 38

Conclusions 38
Closing Remarks 38
Future Work 38

References 39

Team Information 40

4

Executive Summary
Our project is intended for localizing workers in large scale projects. These types of projects are generally
too large for any one person to monitor all worker activity throughout the day. Our solution was to utilize
a smartphone application which takes advantage of smartphone sensors like the accelerometer, gyroscope,
bluetooth sensor, and wifi sensor in order to localize individuals. Location data would then be transferred
to a server via a websocket, saved in a database, and sent out to a website and Hololens application for
visual display.

Requirements Specification

Functional Requirements

Requirement Title

Indoor/Outdoor User Tracking The software shall track 1 individual walking
an unguided trajectory both indoor and
outdoors (proposed test site is in and around
Durham).

Movement Sensitivity The software shall detect users moving at
basic walking and running speeds.

Store Trajectory Information in a Rethink
Database

The software shall send tracking information
from the Android device, to the Rethink
database through a WiFi connection.

Distance Accuracy The software shall track the locations of its
users to an accuracy of ±1 meter.

Delay Accuracy A delay time of no more than 5 seconds will
exist between the time when data is collected,
and the time when data is sent to the database.

HoloLens Our solution will use the location data stored
in our Rethink database for monitoring
movement through the HoloLens.

Table 1. Functional Requirements

5

Use Cases

Fig 1. Use Case Diagram

6

Non-Functional Requirements

Battery Life Cycle The Android application shall run in a
background service, and last for an entire
work day.

GPS Sensor The tracking algorithm shall work without the
use of GPS.

Look and Feel The tracking device shall be comfortable
enough to be worn for the entire work day.

Environmental HoloLens simulation shall be used in indoor
conference rooms

Table 2. Non-Functional Requirements

7

System Design and Development

Conceptual Diagram

Fig 2. Conceptual Diagram

Office Monitoring
From the client’s office a supervisor will be sitting in the conference room with the Microsoft HoloLens
monitoring the jobsite. The HoloLens renders the construction site, buildings, vehicles, and employee
avatars in augmented reality though a connection with the Rethink database. Once the Rethink database
receives a location update, Rethink will automatically notify all changes listeners attached to given data,
and transmit the information through the corresponding sockets (to the HoloLens). The HoloLens will use
an access point from the office to receive this transmission.

Construction Site
Before the construction workers enter the work site, the Android application will calibrate to the user’s
specific orientation and step size. The phone will be attached to the user’s right arm using an armband and
must be worn at all times during construction hours. As the construction workers walk about the site, the
mobile application will record data from the phone's sensors. The data collected from these sensors will
then be used to estimate the user’s new position in real-time. Finally, these positions estimations will be
sent to the server in order to be saved in the database.

8

Architectural Diagram

Fig 3. Architectural Diagram

Website
The website receives latitude/longitude coordinate data from the Android phone, saves the data in the
database, and updates corresponding user markers representing the devices being tracked. The website
will maintain a display which moves these markers through a 2D representation of the worksite (Durham)
and trace the paths as they develop.

HoloLens
The Hololens connects to the office access point in order to receive updates from the server. The server
ends a notification when new location data is received from the mobile application. The HoloLens then
takes this location data from the database and render 3D avatars representing the current positions of all
devices being tracked.

Android Application
The Android application detects user movement via the phone’s sensors. The application determines if the
user has moved from his/her current position, and if so, makes a new position estimation based on both
the previous known location, and the collected data. The application then connects to an access point
within the construction site (Durham) and sends this new position estimate to the server in order to be
saved in the database.

9

Database
The database we are using is RethinkDB. Our schema will store the user position coordinate data. When
the database receives a request from the server to store a new user position or piece of data, the database
updates its storage and broadcast the new data to the Microsoft HoloLens and Website.

Previous Work And Literature
The purpose of this section is to present a few of the basic concepts we have considered for this project.

Our project aims to track individuals more accurately than current tracking systems utilizing GPS alone.
Our client’s last team implemented a Raspberry Pie which used RSSI triangulation (WiFi), and turned
that information into latitude and longitude coordinates. Their solution suffered from floating point
inaccuracy when converting RSSI based distance estimates to latitude/longitude coordinates. We aim for
a solution implementing a Dead Reckoning system with Bluetooth/LE calibration for more accurate
results.

Truong Et Al.
The first piece of literature that was read refers to Truong et al, an indoor tracking solution that utilizes
insole sensors. In order to track a location this literature proposes using insole sensors which can estimate
walking distance by summing up the total number of steps detected, and multiplying by a designated
stride length. They used accelerometer and pressure sensors to record each movement. They then
transmitted the data to a cellphone which filters out the error and records the distance that the user has
walked. The advantage of this approach is more accurate step detection because of the placement of the
sensors (in the shoe). The cons of this approach are large error accumulations when distances exceed ~80
meters due to the inconsistencies in stride lengths.

Gallagher Et Al.
The second piece of literature refers to Gallagher et al, a human posture tracking solution utilizing the
accelerometer, gyroscope and magnetometer sensors of 3 different phones oriented in a fixed position
around a user’s waist, equidistant from the bodies center. The basic premise is that since all devices
experience acceleration relative to a center of motion, the readings of the 3 different phones can be
combined in order to obtain more accurate results. They found the change in posture by integrating the
angular velocities read from the gyroscopes, and adding that integration result to a previous posture
estimate. This technique has a big advantage over magnetometer based orientation tracking solutions
because the gyroscope is not as affected by stagnant electromagnetic radiation in the environment,
whereas the presence of a strong magnetic field will greatly disrupt magnetometer readings.

10

Park, Kwanghyo Et Al.
The third piece of literature refers to Park, Kwanghyo et al, a pedestrian tracking solution that uses a
combination of the accelerometer, magnetometer and step detection in order to determine if a user has
made a 90 degree turn. The literature focuses on having a map and using the dimensions of a building to
determine where a user is based on where they have been. Their solution uses machine learning to
determine if a user turns down some specific hallway, or corridor. The disadvantage of this approach is
that implementing a machine learning algorithm would be time consuming, and CPU intensive on an
Android phone.

A. R. Jiménez Et Al.
The fourth piece of literature I would like to discuss is A. R. Jiménez et al, and their implementation of
LE/UWB radio waves for distance estimation and triangulation in a narrow hallway. The literature claims
similarly high levels of accuracy in distance estimation for both LE and UWB through a simple Path Loss
formula.

RSS is the received power in decibels, RSS0 is a mean RSS value obtained at the reference distance
d0=1m, d is the distance between emitter and receiver, p is the path loss exponent, and v is a Gaussian
random variable with zero mean and standard deviation σRSS that accounts for the random effect of
shadowing (A.R. Jiménez et al).

Our Plan
We used a slightly different approach from anything discussed above. We implemented a Pedestrian Dead
Reckoning system combined with Bluetooth/Sound recalibration. We used eight Nexus 7 tablets as our
Sound emitters, and connected to the tablets via Bluetooth Sockets. Once our client phone recognized a
sound emitted from one of the Nexus 7 tablets, it immediately begins connecting to the next two nearest
tablets and starts listening for their sound emissions. By doing this, we can track the user along a path.

Objectives
The objective is to create an Android application capable of monitoring user movement on a construction
site. This app will use the various sensors available through the phone in order to predict the user’s
trajectory. It will then relay this information to a server, where it can be translated and used for a 3D
visual representation through the HoloLens. The application should be able to store the tracking data
locally on the phone’s storage in the event that the device is disconnected from the network, or is unable
to upload for a period of time.

11

Constraints
Our goal is to provide an indoor/outdoor tracking solution for construction workers to wear during a work
day. The constraints to our solution must not impede the workers ability to perform on the job site. Please
reference table 5 for more details.

Functional Decomposition

Fig 4. Functional Decomposition

Step Tracking Algorithm

Fig 5. Step Algorithm

To determine a user’s location, we have to create an algorithm that can determine the distance a user
travels based on their stride. We have two thresholds that will determine if the (x, y, z) accelerometer data
is a peak or valley. The peak is the maximum value that passed the max threshold. After the peak is

12

detected and the accelerometer data is decreasing, and it goes below the minimum threshold, then we
know that the user has walked a step. We have three vectors. We have a start point, peak, and end point
for our algorithm. The distance (foot stride) can be calculated by computing the difference between the
start and end point.

Functional Design Diagram

Bluetooth Communication Diagram

Fig 6. Bluetooth Communication Diagram

13

Modules

Module Description

Pedometer Module This module is stored inside the Android app, and
contains the step tracking algorithm for predicting
steps, as well as a socket connection to send
coordinate predictions to the server.

Bluetooth Service Module Module operates as a service inside the Android
app. Contains all code for communicating with
Nexus 7 tablets, as well as the code to send and
receive sound. This module does not however
send any data to the server, all data is sent to the
server via the Pedometer Module.

Analytics Module This module is stored in the cloud, and uses
Firebase Analytics to record information about the
Android application. This includes information
like: ANR’s, Crashes, number of downloads,
current users, most viewed screens… etc.

Server API Modules These are the API’s our Pedometer module uses to
communicate with the server. They include an
API for sending coordinate data, as well as an API
for trilateration between Nexus 7 tablets. (The
trilateration module is currently not being used
because the Nexus 7 tablets are not capable of
emitting a sound loud enough to be heard over
large distances, so instead we use the Tablets as
short range beacons)

Hololens Module This module connects to the RethinkDB with a
websocket, and retrieves coordinate information to
display on the Hololens.

Website Module This module pulls data from the RethinkDB, and
displays paths on an HTML canvas.

Test Accuracy Module This module runs on the Website, and includes
functions for calculating error between predicted
paths, and actual paths.

Table 3. Modules

14

Interfaces

Interface Description

Website Interface A visual interface for displaying step data being
collected in real time from our Android
Application. This interface includes options for
retrieving data from previous days, filtering by
users, comparing predicted paths to actual paths,
path correction, scaling, delay speed, and color
adjustments.

Hololens Interface This interface uses Unity to display a more
realistic visual of data being collected in real time.

Firebase Analytics Interface When our Android App crashes, or receives an
ANR, gets a new download, is opened, or updated,
all this information is stored in the Firebase
Analytics Dashboard.

Table 4. Interfaces

Constraints

The phone shall be helded flat in front of the user, parallel to the ground with the front of the
phone always facing in the direction of motion.

The application must be turned on before going inside a building.

There shall be no movement until the application has been initialized and calibrated to the
user’s current position.

The cellphone shall be an Android device with Accelerometer, Magnetometer, Gyroscope, and
Bluetooth sensors.

The Android phone shall use API 21 or above.

A WiFi connection will not always be available.

Table 5. Constraints

15

Implementation

Implementation Diagrams

Front End

Fig 7. Front End Implementation Diagram

Camera Scripts
The building zone camera script will allow office personal to monitor different zones of the
jobsite by using an xbox controller, or hand gestures. The script moves the camera’s angle of
view based on the input received from the office personal.

Worker Movement Scripts
The player control script will allow the avatar to move from the current position to its new
position received from the mobile application and then translate their movement in the HoloLens
augmented relativity environment where it can be monitor by the client. When the database
script receives a response from rethink database it will send new location information to the
Software controller interface Script and determine what avatar needs to be retranslated and

16

send the movement script the new coordinates. The movement script will translate the current
GameObject to be moved from its current position to its new position.

Absolute Path
The absolute path script will render Durham floor path by taking the creating the dimensions
from the floor path and translating into 3D world space by producing 3D objects to represent the
walls, doors and pillars of the Durham building. It will also render the absolute true test paths
with polylines that will allow us to visualize the ground truth of the current user’s location.

Animation Script
The animation script will animate (idle state, walking state, running state, etc.) objects in the
HoloLens depending on their perceived state. We will create animation clips for the avatar
objects. Each state will have a transition to the next animation state. Each avatar instance will
have an animation script that is an instance to the animator controller component that controls
which state the avatar is currently in. The script will pass in the animation instance variables that
controls which state is active. This script will be attached to the avatar game object and the
state will be controlled by the data received from the mobile application.

Game Manager Script
The game manager script responsibility to send and receive user Location data from the
Rethink Database script and process the user location information and if the user location that
was received is currently working at the jobsite the game manger will send that data to avatar
game object and the avatar movement script will translate the game object to its new location.

UI Menu Input Scripts
UI menu scripts will receive finger gestures and voice commands. These commands will be
used for switching between zones and view perspectives. The UI Menu script will receive input
from user wearing the HoloLens. The Software controller interface Script will receive the input
and send it to the UI interface controller. The UI interface controller will have an array of UI
components that implements the Menu UI interface and will call the interface method. Each
component of the UI menu will perform the operation that is requested from the user.

Rethink Database Script
The Database script will be used to send and receive data from the database. If the database
sends data to the HoloLens, this script will parse the data received, and send it to the player or
vehicle script in order to render the appropriate translation. The Rethink script will send a https
request to the database for new user location giving the last time stamp the HoloLens have
received and it will send back all the users location data in sorted order.

17

Back End

Fig 7. Backend Implementation Diagram

18

Technologies
● Android/Android Studio 2/Java/Realm DB/Bluetooth/Firebase/Socket.io for Java

○ Used for developing the Android application
● Materialize/HTML/Canvas/Javascript

○ Used for developing the front end website
● Unity3D/C#

○ Used for developing the Hololens Application
● RethinkDB/Socket.io

○ Database used for storing information

Software Used
● Unity3D

○ Used to create the visual Hololens Display
● Android Studio 2

○ This is the defacto IDE for all Android Development, it is supported by Google.
● Firebase Analytics

○ This is another Google product, it allows a quick and easy way for gathering application
analytics such as ANR’s and crashes.

Standards/Best Practices
Our team reviewed several IEEE standards that would apply to our project:

1.) IEEE NO2571964 - Burst Measurements

The IEEE Technical Committee Report in recommended practices for Burst Measurements in the Time
domain is about looking at peak ranges of noise caused by bursts. It shows a study how the results that are
recording from reading sensor data can be analyzed. This can be done by recording the magnitude and
duration of each burst. This standard is intended to classify the noise of the transmitted data from signals
that are sent from hardware. Our team can use this standard because our solution will have to deal with
noise surrounding beacons, and mobile sensors. The accuracy of the beacon distance signals from the
device can have a lot of error due to RSSI values that are transmitted from the beacon to the mobile
device. Based on this article, magnitude can be measured by the under bust and lower bust intervals and a
bust duration. You can also view different burst magnitudes of sensors such as instantaneous average and
peak which is the highest output value. We are using a similar method for determine our step count and
length by using bursts to find the peaks and valleys. We then compare the magnitude of the burst to
determine a user stride length. We can apply this IEEE article for the beacon noise as well to determine
the peaks and valleys of noise in order to find the best time accuracy to achieve a functional requirement.
The standard also talks about the awareness of energy busts that can be applied to our accelerometer data
which interferes with signals and create noise.

19

 2.) IEEE NO29148:2011 - Lifecycle Processes

The IEEE International Standard- Systems and software engineering Life Cycle Processes use fir defining
requirements that the process of the software undergoes throughout the stages of development. The
process starts from a project blastoff meeting that will discover the components, scope and identifying
your stakeholders. There are two types of requirements: Functional and nonfunctional that our team will
need to consider. Non-Functional are quality requirements that specify the characteristic of your system.
Functional are the implementation requirements that serve as a contract to both the developers and
stakeholders. Requirements are the language that is used to clarify what the system must meet after the
software life cycle is completed. The requirements should have attributes that contain identification
information to allow traceability. Requirements are intended to solve the client’s business problem. It
defines the requirements that your software must meet and any restrictions that your software should
satisfy. The System and software life cycle process can apply to our project because we have to meet with
our client which is like the project blast off and define the functional and non-functional requirements
along with the constraints of our project. We spend several meetings to refine the requirements and make
sure that they are accurate and can be traced and tested.

 3.) IEEE 1008-1987 - IEEE Standard for Software Unit Testing

The IEEE Standard for Software Unit Testing is to specify a standard approach for unit testing that is used
for a based line for evaluating critical software components. The IEEE standard unit testing process has
three phases:

● Perform the test planning
● Acquire the test set
● Measure the test unit

The Standard gives you guidance for implementing test procedures against your requirements to ensure
that your software meets your client expectation.

The document discusses a general approach on how you can come up with a schedule and what resources
your testing team will require to meet the requirements specifications. Once you have developed a
schedule and an idea of how to apply unit tests such as what technology is required and how long will it
take to write tests, you can define a test set. This is important because you can test for every case. For
example, if you have to test all possible combinations of 10 items, you will have 10,1000 combinations of
tests that you must deploy. Instead you should define a set that covers the whole domain. With a domain
agreed upon, the next step is to execute and evaluate the results to determine how to fix them. The
Standard for Software Unit Testing will help our team define coverage for meeting our 1-meter accuracy
requirement. This will involve input from many sensors including:

● Magnetometer
● Gyroscope
● Accelerometer

https://standards.ieee.org/standard/1008-1987.html

20

 4.) Bluetooth IEEE 802.15.1

Defines physical layer and MAC specification for wireless connectivity.

 5.) Wifi IEEE 802.11

Defines protocols for Wifi connections.

21

Testing/Evaluation

Test Plan

Functional Requirements Test Plan

Functional
Requirement:

Test Plan: Verification: Validation:

Indoor/outdoor
user tracking

We will setup 3
android devices at
certain starting
locations for
tracking. We will
provide the user with
a specific path to
walk which includes
a start point and an
end point. We will
record their path and
display it on Mapbox
and compare their
path with the test
path.

Integration Testing:
The AR team will
design unit tests:

An avatar game object
instance gets created for
each individual set up to
be monitored via our
application.

Compare the avatar path
with the test path and
report the results
The Web team will
design Unit tests:

Will store the user’s
path from the start point
to their end point and
compare their path with
the test path and report
their results.

The backend team will
create unit tests:

Verifies that the schema
tables get the correct
user path from the
mobile application.

The test from all 3
teams will have code
walkthroughs and

AR validation:
The tester shall verify
that there are 3 avatars
that are rendered in
the 3D worksite. They
will verify that their
path matches the test
path specified by the
test plan and it is
rendered in the correct
location on the map.

Web Validation:
The tester will verify
visually that the users
path taken has the
same longitude and
latitude coordinates as
the test plan.

Database Validation:
It will verify that the
table schemas
recorded all the
location data from the
3 users’ path from the
mobile device.

After the tests are
completed, the tester
will do a report
analysis of the errors
that they found and

22

reviews to verify that
the unit tests are
tracking 3 individuals
according to their path
trajectories.

will be reviewed by
the development team.

Movement
Sensitivity

We will turn on the
mobile application
and then have the
user perform normal
walking and running
speeds.

Usability Mobile Test:

The user will launch the
application and perform
a walking movement
and running movement
and report the results.

The mobile team will
have a walkthrough to
verify how this test is
going to meet moving
sensitivity requirement.

Tester:
The user will turn on
the mobile application
and will perform
running and walking
movement and look to
see if the mobile
device detects their
walking and running
speeds.

After the tests are
completed, the tester
will do a report
analysis of the errors
that they found and
will be reviewed by
the development team.

23

Store tracking to
Rethink DB

We will connect the
mobile device to a
Wi-Fi and will then
perform a step and
make a http post
request to the
database.

Mobile Unit Test:
Verifies that the mobile
application does an
HTTP request when the
device is connected to a
WI-FI access point.

Backend unit Test:
Verifies that the data
received from mobile
application matches
with the recorded data
from the mobile
application.

The backend and mobile
team will have code
walkthroughs and
reviews to verify that
they the unit tests are
fulfilling sending data
through an access point
according to the
specifications of the
storing tracking
information
requirement.

Mobile Tester:
Verifies that the
application does an
HTTP request to the
server and the
connection was
successful.

Backend Tester:
The tester will verify
that the data recorded
on the phone matches
with the data stored on
the database table
scheme.

After the tests are
completed the tester
will do a report
analysis of the errors
that they found and
will be reviewed by
the development team.

Distance
Accuracy

We will give a user a
new starting location
to start the
application at. We
will instruct him/her
to move 1 meter and
see if the new current
location is within
meter.

Mobile Unit Test:
Create a unit test that
starts at Location A and
moves to location B and
then verifies the user
new location is within
our 1-meter accuracy
requirement.

The mobile test team
will perform a code
walkthrough that
explains how their test
meets the specification
of the distance accuracy
requirement. The review
team will check
documents and files to

Mobile Tester:
Verifies that the
movement from
Location A to
Location B is within
1-meter accuracy.

After the tests are
completed the tester
will do a report
analysis of the errors
that they found and
will be reviewed by
the development team

24

ensure that the code
meets our coding
standards.

Delay Accuracy We will use a
timestamp when the
mobile application
has gathered all the
sensor data and starts
to perform the
smoothing/prediction
algorithm while the
software creates a 5
second delay. After
the delay is
completed the
software will create
another time stamp
and compute the time
difference.

Mobile Unit Test:
Create a unit test that
takes the time stamp
after the data has been
collected and after the x
second delay has been
completed. Then
compute the time
difference and compare
it with delay
requirement.

The mobile test team
will perform a code
walkthrough that
explains how their test
meets the specification
of the delay accuracy
requirement. The review
team will look over the
documents and files and
confirm it meets our
coding standards.

Mobile Tester:
Verifies that the delay
time of the application
is within the 5 second
threshold by running
the test script and
report the results.

After the test is
completed, the tester
will complete a report
analysis of the errors
that were found. The
development team
will review these
documents.

Drift Accuracy We will start a user at
a starting point by
Durham. We will
then have the user
move 2 meters in any
direction and record
the position and then
do a computation of
the possible positions
and see if the user is
within the 1 meter of
the computed
location.

Mobile Unit Test:
Create a unit test that
takes the starting
position of the test plan
and then computes all
the possible new
position paths the user
could had taken and
then compare those
position with the user’s
current position and
report the results.

The mobile test team
will perform a code
walkthrough that
explains how their new

Mobile Testers:
Verifies the users new
position is within
1-meter of the
possible computed
positions that was
computed.

After the test is
completed, the tester
will complete a report
analysis of the errors
that were found. The
development team
will review these
documents.

25

positions will meets the
specification for the
drift accuracy
requirement. The
reviewers will look at
the code to see if it
meets our coding
standards.

HoloLens
Monitoring

The HoloLens will
receive the new
recorded location
data from the Rethink
database. It will then
render the users new
position in the
augmented reality
map. The user that is
wearing the device
should see the avatar
move from the user’s
current position to
the new position that
was received.

AR Unit Test:
Create a unit test that
takes the newly
recorded data from
RethinkDB and
calculate the new
position that the avatar
transform should read
after unity renders the
new position. Compare
the avatar’s new
position with the
computed position and
report the results.

The AR team will
perform a code
walkthrough that
explains how their new
computed transform
position meets the
specification of the
HoloLens monitoring
requirement. The
reviewers will look at
the code and see if it
meets the unity coding
standards.

AR Testers:
Verifies the new
transform position the
avatar moves to in the
AR map is the same as
the newly computed
position.

After the test is
completed, the tester
will complete a report
analysis of the errors
that were found. The
development team
will review these
documents and
address the software
errors that were
reported.

26

Monitor Accuracy We will create a
timestamp and send a
location packet by
using a http request
to the database.
When the database
has received the
packet, it will create
another timestamp.
The database will
then send the location
packet to the website
and HoloLens
software. The
HoloLens and
website will then
create a new
timestamp and
calculate the
difference and see if
it is within 10 second
threshold.

AR Unit Test:
Create a unit test that
take the recorded
timestamp from the
mobile application and
create a new timestamp.
Then compute the
difference and compare
it with the 10 second
requirement and report
the results.

Web Unit Test:
Create a unit test that
takes the recoded
timestamp from the
mobile application and
creates a new
timestamp. Then
compute the difference
and compare it with the
10 second requirement
and reports the results.

Backend Unit Test:
Create a unit test that
takes the recoded
timestamp from the
mobile application and
create a new timestamp.
Then compute the
difference and compare
it with the 10 second
requirement and reports
the results.
The AR, Web, and
Backend will perform a
code walkthrough that
explains how their time
calculation meets the
monitor accuracy
requirement. The
reviews will look at the
code and see if it meets
the coding standards.

AR Testers:
Verifies the that
recorded location is
being displayed on the
map in AR within the
10 second threshold
from the time it was
recorded on the
mobile device.

Web Testers:
Verifies the that
recorded location is
being displayed on the
website map within
the 10 second
threshold from the
time it was recorded
on the mobile device.

Backend Testers:
Verifies the that
recorded location is
being displayed on the
website map within
the 10 second
threshold from the
time it was recorded
on the mobile device.
After the test is
completed, the tester
will complete a report
analysis of the errors
that were found. The
development team
will review these
documents and
address the software
errors that were
reported.

27

Bluetooth Sensor The android device
will be paired with
the beacon so that
they our connected to
each other. We will
set the beacon at a
location x inside the
jobsite. When the
android device
receives a signal
from the beacon, it
will send a location
update to the android
device.

Mobile Unit Test:
Create a unit test that
takes the updated the
location from the
beacon and then
compares it with the
current location that is
stored on the device. It
should compare these
two and report the
result.

The Mobile team will
perform a code
walkthrough that
explains how their
comparisons meet the
Bluetooth sensor
requirement. The
reviews will look at the
code to make sure that
the developers are
meeting the coding
standards.

Mobile Tests:
The user will stand

within 1 meter of the
beacon to trigger the
location update. They
will then verify that
the mobile devices
current location is
getting updated.

After the test is
completed, the tester
will complete a report
analysis of the errors
that were found. The
development team
will review these
documents and
address the software
errors that were
reported.

Android Low
Battery
Notification

The android device
battery must be
drained to 10% of its
total capacity. Then
we will run the
application on the
android device.

Usability Mobile Test:
Let the device get below
10 percent of battery
and display a low
battery notification.

The Mobile team will
perform a code
walkthrough that
explains how their
notification meets the
Android low battery
notification requirement.
The reviews will look at
the code to make sure
that the developers are
meeting the coding
standards.

Mobile Tester:
Tester should see if
the low battery
notification displays
when the devices
battery is below 10
percent.

After the test is
completed, the tester
will complete a report
analysis of the errors
that were found. The
development team
will review these
documents and
address the software
errors that were
reported

28

HoloLens Low
Battery
Notification

The HoloLens battery
must be drained to
10% of its total
capacity and then run
the application on the
device.

Usability AR Test:
Let the device get below
10 percent of battery
and display a low
battery notification.

The AR team will
perform a code
walkthrough that
explains how their
notification meets the
HoloLens low battery
notification requirement.
The reviews will look at
the code to make sure
that the developers are
meeting the coding
standards.

AR Tester:
Tester should see if
the low battery
notification displays
when the devices
battery is below 10
percent.

After the test is
completed, the tester
will complete a report
analysis of the errors
that were found. The
development team
will review these
documents and
address the software
errors that were
reported

Table 6. Function Requirements Test Plan

29

2.13.1 Non-Functional Test Plan

Non-Functional
Requirements

Test Plan Verification Validation

Battery Life Cycle A user will turn on
the mobile device
and launch the
application as a
background
process to monitor
the battery and
CPU usage
throughout an
8-hour work day.

Usability Mobile test:
The user will launch
the app and monitor
the mobile application
every hour to report
the results.

The Mobile team will
explain why the
monitoring test meets
the Battery Life Cycle
requirement.

Mobile tester:
The user will launch the
mobile application and
monitor the Android
profiler every hour for 8
hours.

After the test is
completed, the tester will
complete a report
analysis of the CPU
usage. The development
team will review these
documents and address
the software battery
issues, if any.

30

GPS Sensor We will turn off
the GPS location
service on the
mobile device and
create a
pre-planned
walking path
around Durham.
We will record the
path walked,
compare it with
the preplanned
walking path and
show the
differences.

Mobile Unit Test
Create a unit test
which takes the
pre-planned route,
compares it with the
user’s route and
reports the results.

The mobile team will
perform a code
walkthrough that
explains how their
unit test meets the
GPS sensor
requirement. The
reviewers will look at
the code to ensure the
developers are
meeting the coding
standards.

Unit test where you
create a walking path,
perform the walk,
compare the expected
path with the actual path
and return the result

Look and Feel We will place the
mobile device
inside of the
armband and wear
the device for 8
hours.

Usability Test:
We will create a test
that requires the tester
to wear the mobile
device for a normal
work day and report
the results.

Mobile Tester:
The tester will wear the
device around his/her
arm for 8 hours and then
report the comfortability
to the development team.

Environment We will launch the
HoloLens
application at the
clients facility
inside of their
conference room.

Usability Test:
We will create a test
that requires the tester
to wear the HoloLens
inside of the clients
facility.

AR Tester
The tester will go to the
client’s facility and see if
their facility has the
proper environment for
running the HoloLens
application.

The tester will complete
a report analysis of their
findings to the HoloLens
development team.

 Table 7. Non-Functional Requirements Test Plan

31

Interface Testing
● Website Interface

○ We tested the website with test coordinates following specific paths such as:
■ Straight line
■ Sharp Turns
■ T-Shaped
■ U-Shaped

○ We then compared the display on the website with the display the coordinates should
have actually made. If they were the same, it was displaying correctly.

○ We also used test coordinates that included out of bound areas to verify that the Canvas
would not display points in these areas.

○ We tested collecting data for different users to verify the websites display correctly
filtered by selected user.

○ We tested over multiple days to verify that previous days data was also being stored for
selected users.

○ We practiced walking paths in real time, and verified the website updated correctly.
● Firebase Analytics Interface

○ No testing is needed for this, this is a Google software, we did not create this.
● Hololens Interface

○ Testing was done in a similar manner to the Website Interface, only instead of testing for
multiple users and filtering by user and day, we only tested on real time data.

32

System Integration Testing

Overview
Our system started with the Android application. We knew it was important to get this at least started and
ready before integrating any other systems because all other systems rely on the data from the Android
application. Once the application implemented the Pedometer algorithm, we began incorporating the
server and frontend simultaneously. First we created a server api for sending step data from the Android
app to the server to be saved in the RethinkDB. Once this was completed, we set up an Ajax call in the
frontend website for retrieving data from the server to be displayed on Canvas.

Once we had all three parts essentially communicating, we were able to really begin developing our
individual components. The Bluetooth service was added to the Android application for recalibration, A
canvas visual display was added to the front end which continued to develop overtime, and websockets
were implemented on the Server for more reliable communication.

Testing
To test our integrated system, we outlined a series of paths in Durham. We then walked these paths, and
compared the data we received from the Android application with what the data should have looked like.
At one point steps were getting dropped from the data due to wifi connections. This was fixed by
implementing RealmDB on the Android application for saving all data before sending over the
websocket. At another point we realized the heading predictions would freeze and stop updating. This was
because electromagnetic fields in Durham were affecting our heading readings. We fixed this by
switching from using the Android compass, to using the Gyroscope.

We essentially continued like this, walking paths, comparing our predicted paths with the actual paths,
and updating different components of our system in order to get the best results.

33

User-Level Testing
All of our user-level testing was attached to the frontend website. We would test in a number of ways:

1. Walking paths, and verifying data was displayed in real time
2. Selecting a time delay from settings, and again walking paths, and verifying data was displayed

with selected delay
3. Walking paths as different users, and verifying the website correctly filtered step data by user.

(I.e. if you have personA selected in real time, you should only see real time step data from
personA, and similarly, if you select a date, you should only see data on that date related to the
selected person)

4. Walking paths on multiple days as multiple users, and verifying the website was able to filter out
the collected data when specific users and dates were selected

5. Walking predetermined paths, and overlaying the correct path on top of the predicted path in
order to determine accuracy

6. Modifying colors of different paths
7. Clearing the screen, and restarting
8. Adjusting the X-scale and Y-scale
9. Testing using a zone-adjust algorithm to keep points from being displayed in restricted areas
10. Testing without using a zone-adjust algorithm
11. Verifying that with zone-adjust on, data is still displayed in either real time, or with the

appropriately selected delay
12. Walking paths which cause a user to loose their network connection, then walking back into a

connected area, and verifying steps were not lost, and are also sent in correct order
13. Walking past re-calibration points, and verifying that they are recognized and pulling the users

into the correct areas without disrupting the step order

Validation/Verification
Our validation technique was to walk predetermined paths, and compare the predicted paths of our
application, with the actual predetermined paths. Generally there would be some error here, so we would
sum up the distances between the predicted points and predetermined points, then average them in order
to get our error. If our error was within ~1m, then our system was working correctly. Otherwise, we
needed to change parts of our system in order to make it more accurate.

Evaluation
We determined that using a zone-adjust algorithm when collecting data, our predicted path accuracy was
generally within ~1m, which was our functional requirement. We tested four different predetermined

34

paths, and compared the results. The figure below shows the four predetermined paths, from left to right
in Fig 8 (below) are: straight path, turns path, and loop path. Fig 9 (below) shows the final path, the long
path.

Fig 8. Test Path Figure

Fig 9. Long Path

35

Test Path Accuracies:
1. Straight Path:

a. 0.58 meters
2. Turn Path:

a. 0.462 meters
3. Loop Path:

a. 1.108 meters
4. Long Path

a. 1.21 meters

36

Project and Risk Management

Roles & Responsibilities
Cory Johannes - Frontend/Research
Jose Lopez - Frontend
Ryan Quigley - Android/Step Tracking
Travis Harbaugh - Hololens/Android
Ben Holmes - Android/Bluetooth/Sound
Anthony House - Frontend/Server/Backend

Project Schedule

Proposed Spring Schedule

Fig 10. Spring 2019 Gantt Chart

37

Actual Spring Schedule

1/20/19-2/3/19: Test Plan, Hololens visual display, Backend development, Android App
2/4/19-2/10/19: Test Plan, Hololens visual display, Backend development, Android App
2/11 - 2/17: Hololens, Android application, Backend development, GPS initial position, Test plan
2/18 - 2/24: Hololens, Android application, Restricted zoning, Redeveloped Test Plan, backend, testing
2/25 - 3/3: Hololens, Android, backend development, Android application, testing
3/4 - 3/10: Configuring Bluetooth infrastructure, websockets for android app, database, front end update,
updated restricted zone, testing, live demo
3/11 - 3/24: Web development, Android App, Website, testing
3/25 - 4/6: Hololens, Web development, Android development, testing
4/7 - x: Documentation, demo to client, presentation

38

Risks and Mitigation
Few risks were foreseen in the project, and none occurred. We considered that due to the need for this
system to have many phones in a construction area for several hours each day, there is a risk to the
devices being dropped or damaged. This threat can be minimized by using padded and secured phones.
There is also the risk our client is taking when purchasing supplies for our project. This can be lessened
by avoiding expensive purchases whenever possible, either finding cheaper alternatives or using
equipment we already own.

Lessons Learned
We learned that while sound recalibration is possible with Android devices, it will be inaccurate in
particularly loud areas like construction sites without the use of extremely powerful speakers and
ultrasonic waves. We chose to use sound over RSSI trilateration because of the wild floating point
inaccuracies associated with converting RSSI trilateration values to the lat and lon coordinates. Overall it
seems that in order to make this a commercially applicable system, expensive phones with Radio/UWB
antennas would be needed over Bluetooth/Wifi antennas. Despite the problems associated with the
recalibration methods, our Pedestrian Dead Reckoning system worked surprisingly well, and was
unhindered by external forces such as noise, or electromagnetic radiation.

Conclusions

Closing Remarks
One important problem with this type of project is the level of hardware being used. With typical Android
phones, the hardware is not powerful enough to do things like time dilation of arrival calculations, or to
send sound frequencies long distances. Because of this, we relied on close range soundexchange, and
were not able to use trilateration. With the correct hardware, this type of project is perfectly manageable,
but given our functional requirement of localizing without the use of a Wifi connection, or any
GPS/Network provider, it resulted in us needing a relatively large amount of infrastructure for
recalibration.

Future Work
Our system could be used on large scale sites in the future, assuming that phones with UWB/Radio
antennas, or extremely powerful speakers capable of sending frequencies in the range of 20,000hz -

39

40,000hz are used. If UWB/Radio antennas are used, more accurate trilateration is also possible over long
distances.

References
1. A. Jimenez and F. Seco, “Finding objects using UWB or BLE localization technology: A

museum-like use case,” 2017 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), 2017.

2. L.-H. Chen, E. H.-K. Wu, M.-H. Jin, and G.-H. Chen, “Intelligent Fusion of Wi-Fi and Inertial
Sensor-Based Positioning Systems for Indoor Pedestrian Navigation,” IEEE Sensors Journal, vol.
14, no. 11, pp. 4034–4042, June 2014.

3. Z. Chen, H. Zou, H. Jiang, Q. Zhu, Y. Soh, and L. Xie, “Fusion of WiFi, Smartphone Sensors and
Landmarks Using the Kalman Filter for Indoor Localization,” Sensors, vol. 15, no. 1, pp.
715–732, Jan. 2015.

4. A. Gallagher, Y. Matsuoka, and W.-T. Ang, “An efficient real-time human posture tracking
algorithm using low-cost inertial and magnetic sensors,” 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Feb. 2005.

5. Y. Jin, H.-S. Toh, W.-S. Soh, and W.-C. Wong, “A robust dead-reckoning pedestrian tracking
system with low cost sensors,” 2011 IEEE International Conference on Pervasive Computing and
Communications (PerCom), May 2011.

6. M. Oner, J. A. Pulcifer-Stump, P. Seeling, and T. Kaya, “Towards the run and walk activity
classification through step detection - An android application,” 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, 2012.

7. K. Park, H. Shin, and H. Cha, “Smartphone-based pedestrian tracking in indoor corridor
environments,” Personal and Ubiquitous Computing, vol. 17, no. 2, pp. 359–370, Feb. 2013.

8. P. Truong, J. Lee, A.-R. Kwon, and G.-M. Jeong, “Stride Counting in Human Walking and
Walking Distance Estimation Using Insole Sensors,” Sensors, vol. 16, no. 6, p. 823, June 2016.

9. IEEE Technical Committee Report on Recommended Practices for Burst Measurements in the
Time Domain," in IEEE No 257-1964 , vol., no., pp.1-12, 15 May 1964

10. ISO/IEC/IEEE International Standard - Systems and software engineering -- Life cycle processes
--Requirements engineering," in ISO/IEC/IEEE 29148:2011(E) , vol., no., pp.1-94, 1 Dec. 2011

11. "IEEE Standard for Software Unit Testing," in ANSI/IEEE Std 1008-1987 , vol., no., pp.1-28, 17
June 1987

40

Team Information
Cory Johannes - johannes@iastate.edu - Frontend/Research
Jose Lopez - jdlopez@iastate.edu - Frontend
Ryan Quigley - rquigley@iastate.edu - Android/Step Tracking
Travis Harbaugh - travis@iastate.edu - Hololens/Android
Ben Holmes - btholmes@iastate.edu - Android/Bluetooth/Sound
Anthony House - houseant@iastate.edu - Frontend/Backend/Server Admin

